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Overview:

1. Core concepts

2. A/B testing 
paradigms in 
business

3. Simulation 
exercise

4. Debrief
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What will you get out of this workshop?

● A hands-on understanding of A/B testing:
○ What is it?
○ What types of business problems can it help you solve?
○ What does it look & feel like to use A/B testing for 

decision making?

● A high-level understanding of how to use A/B 
testing tools to solve the right problem
○ Key aspects of using statistics for business decision 

making
○ Without getting bogged down in math
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Core Concepts in 
A/B Testing 



A/B testing is:
the practice of using of 
randomized experiments 
for making business 
decisions
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A/B testing is:
the practice of using of 
randomized experiments 
for making business 
decisions
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A/B testing is not:
trying multiple strategies in an ad 
hoc manner and comparing results

Definition:
A

B



People are asking...

Why should you care 
about A/B testing?
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When used properly:
● Randomized experiments are the “gold 

standard” for measuring cause & effect

○ A/B testing can help you predict the future

● Can help you truly understand which 
components of your products/services drive 
value

● Can facilitate a culture of empirical 
measurement & organizational learning
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“Experimentation is the 
least arrogant method 
of gaining knowledge.”

— Isaac Asimov



A/B testing is for everyone
● Tech companies (Microsoft, Google, Amazon, 

Facebook) are well-known for having 
intensely experimental organizations
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A/B testing is for everyone
● Tech companies (Microsoft, Google, Amazon, 

Facebook) are well-known for having 
intensely experimental organizations

● New software companies have opened up 
rigorous experimentation to even very small 
companies (or small, non-technical teams at 
large companies)

○ Almost every web-analytics platform can 
be used for experimentation
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Recommended Reading

For more details on developing an 
experimental culture in your 
organization:

Experimentation Works: The
Surprising Power of Business 
Experiments

For more technical/implementation 
details about experimentation:

Trustworthy Online 
Controlled Experiments
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A brief introduction to....

The Basics of Business 
Experiments
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Why run experiments?
● Randomized experimentation is a technique 

of gathering data that is specifically designed 
as a means of “causal inference”
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Why run experiments?
● Randomized experimentation is a technique 

of gathering data that is specifically designed 
as a means of “causal inference”

Causal inference: 
The process of understanding and measuring 
cause & effect

Many (not all) business decisions are 
problems of causal inference
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“Correlation is not causation”
Difference between correlation (or association) 
and causation:

● “We redesigned our homepage last week and 
customer conversions increased”

● “Customer conversions increased last week 
because of our new homepage design”

How to tell the difference?
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Why is this problem hard? 
It’s hard to separate your actions from other 
factors that could affect customer behavior:
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Why is this problem hard? 
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factors that could affect customer behavior:
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How does randomization help?
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How does randomization help?
Randomizing which homepage customers see allows you 
to isolate the effect of that variable; with enough data, 
other factors that affect behavior should be balanced 
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A/B testing is valuable in situations when:
You have multiple strategies/actions you can 
implement and:

1. [You are willing to admit that] You don't know 
which one is best 

2. You can implement each strategy using 
randomization 

3. You can measure the results of each strategy  
along dimensions that you care about
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A/B testing is a particularly powerful tool 
in digital business, relative to traditional 
forms of commerce

● Cost of “innovation” relatively low

● Randomization is easy

● Measurement is easy

“Offline” A/B testing can also be valuable, but 
we will focus on digital experiments today
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What should you test?

● This depends critically on your 
industry/context

● Many online resources and user experience 
guides exist

● Beware though: What works for one company 
may not work for yours

○ If you develop a culture of systematic 
experimentation, you will learn which 
components of your website/service 
matter most
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Key Steps for Running an A/B Test
1. Develop a set of “hypotheses” to test

e.g., “variations”, “treatments” “arms”, “strategies”
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Key Steps for Running an A/B Test
1. Develop a set of “hypotheses” to test
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2. Define your key evaluation criteria
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Key Steps for Running an A/B Test
1. Develop a set of “hypotheses” to test

e.g., “variations”, “treatments” “arms”, “strategies”

2. Define your key evaluation criteria

3. Define your intended sample size & stopping 
criteria (will revisit)
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Key Steps for Running an A/B Test
1. Develop a set of “hypotheses” to test

e.g., “variations”, “treatments” “arms”, “strategies”

2. Define your key evaluation criteria

3. Define your intended sample size & stopping 
criteria (will revisit)

4. Run your experiment: Randomly assign 
customers to treatment arms
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Key Steps for Running an A/B Test
1. Develop a set of “hypotheses” to test

e.g., “variations”, “treatments” “arms”, “strategies”

2. Define your key evaluation criteria

3. Define your intended sample size & stopping 
criteria (will revisit)

4. Run your experiment: Randomly assign 
customers to treatment arms

5. Evaluate your results:
- Implement the “winning” arm
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Walkthrough: Optimize Nike product page
Suppose a UX designer has a new idea for how 
the product page should look:
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Hypotheses? ✅ 
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Hypotheses? ✅ 

Evaluation criterion?

How long to run? 
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Hypotheses? ✅ 

Evaluation criterion? Conversion rate ✅

How long to run?
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Hypotheses? ✅ 

Evaluation criterion? Conversion rate ✅

How long to run? 1 week ✅
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Run experiment: A/B Test in Action



Run experiment: A/B Test in Action
User’s computer
 requests website

Web server

User
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Run experiment: A/B Test in Action
User’s computer
 requests website Testing software 

randomly assigns user 
to treatment armWeb server

User sees assigned 
treatment

Testing software records 
user actions 

(e.g., purchase/no 
purchase)

User

👤 💻
A B

Software reports test results 
back to experimenter

https://emojipedia.org/laptop/


Evaluating the results from an A/B test
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Evaluating the results from an A/B test
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Evaluating the results from an A/B test
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Evaluating the results from an A/B test
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Evaluating the results from an A/B test
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Sample Dashboard (simulated data)

“Effect size”



Evaluating the results from an A/B test
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Sample Dashboard (simulated data)



Evaluating the results from an A/B test
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Sample Dashboard (simulated data)

● This dashboard reports raw “p-values”

● It is common to report 1-p as “confidence” 
(e.g., p=0.02 implies “98% confidence”)

● Practices are changing, but this is very 
common paradigm in statistical software



How does statistics help?

Statistics provides a 
principled way to quantify 
how certain you should be 
about your results given:

● the magnitude of effect 
you observed and your 
sample size

In general: More data → 
more confidence the effect 
you measured is real
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Common statistics can be difficult to interpret

The question you want to answer:

● What is the probability that version A is 
better than version B?
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Common statistics can be difficult to interpret

The question you want to answer:

● What is the probability that version A is 
better than version B?

The question most A/B testing tools answer 
(those based on p-values or “Frequentist” 
statistics):

● Assuming there were no difference between 
versions A & B, what is the chance I would 
have observed a result as (or more extreme) 
than the result I observed in this experiment?
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p-values for humans (rules of thumb)

p = 0.0 0.001 0.01 0.05

100% 
“Confidence” 99.9% 99% 95%



p-values for humans (rules of thumb)

p = 0.0 0.001 0.01 0.05

100% 
“Confidence” 99.9% 99% 95%

● The most common rule of thumb is to say a 
p<0.05 is “statistically significant”

● There is nothing magic about p=0.05! (or “95% 
confidence”)
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Evaluating the results from an A/B test
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Sample Dashboard (simulated data)

● To conclude this example:

○ It appears quite likely that the “A” variant (i.e., 
orange button) has a higher conversion rate 
than the “B” variant (green button)

○ Decision: Keep orange button



Testing Paradigms 
for Business 
Decisions 



Understanding 
and Defining the 
Goal of A/B Tests

The importance of... 



Statistics in the real world

● There’s a fundamental trade-off in statistics:
Precision

Larger sample sizes

Speed

Smaller sample sizes



Statistics in the real world

● There’s a fundamental trade-off in statistics:

● It’s useful to think about the goals of an 
experiment as falling into one of two 
paradigms:

64
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● You come to the table with a set of 
predetermined hypotheses

● Primary concerns:

○ Trying to learn something fundamental 
about your customer

○ To measure and quantify the difference 
between arms with precision

○ The correct choice is made between A & B 
(making a mistake has external costs)
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  Hypothesis Testing ��



● The primary goal is to maximize a particular 
metric (e.g., conversion rate, revenue) over a 
fixed period of time

● You care less about: 
○ making the best decision 100% of the time
○ exactly why or how things work

  Metric Optimization ��



● The primary goal is to maximize a particular 
metric (e.g., conversion rate, revenue) over a 
fixed period of time

● You care less about: 
○ making the best decision 100% of the time
○ exactly why or how things work
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● The primary goal is to maximize a particular 
metric (e.g., conversion rate, revenue) over a 
fixed period of time

● You care less about: 
○ making the best decision 100% of the time
○ exactly why or how things work
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● The primary goal is to maximize a particular 
metric (e.g., conversion rate, revenue) over a 
fixed period of time

● You care less about: 
○ making the best decision 100% of the time
○ exactly why or how things work
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● The primary goal is to maximize a particular 
metric (e.g., conversion rate, revenue) over a 
fixed period of time

● You care less about: 
○ making the best decision 100% of the time
○ exactly why or how things work
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  Metric Optimization ��

Deploy optimal 
treatment arm

Treatment A

test (random assignment) implement (all remaining customers 
given same treatment)

Treatment B

Fixed period of time



Which paradigm is “correct”? 

● Neither; both have valid use-cases and they 
aren’t even necessarily mutually exclusive
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Which paradigm is “correct”? 

● Neither; both have valid use-cases and they 
aren’t even necessarily mutually exclusive

● However:

○ Sample sizes needed for very precise 
experiments are much larger than many 
people realize

○ “Optimization” paradigm more closely 
matches most scenarios I’ve encountered 
in A/B testing
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Sample size example using classical 
“significance” and “power” levels

Suppose website conversion rate is 5%...

● To detect a 
○ 0.5% absolute difference (~10% relative difference) 

● You need: 90,000 observations

● To detect a 
○ 0.1% absolute difference (2% relative difference) 

● You need: 1 million+ observations
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In my research at medium-to-large e-commerce firms, 
half of all A/B tests have effect sizes smaller than 0.1% (in absolute terms)



Note on sample size calculations

● I highly encourage you to play around with a 
sample size calculator: 

e.g., https://www.evanmiller.org/ab-testing/sample-size.html 

● Can be very valuable for setting sample sizes 
ahead of time when in the “hypothesis 
testing” paradigm

○ i.e., can give you principled reasons for knowing 
when to stop an experiment

● This will help you develop intuition about the 
magnitude of effect sizes that you can expect 
to detect at your company’s scale
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Why classical notions of “significance” may 
be irrelevant for many A/B tests
● Classical “statistical significance” are based on 

“false positive control” guarantees

○ “False positive”: You conclude there is a true 
difference between A & B, when in reality there 
is no difference

○ 5% significance level = 5% of results will be false 
positive
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Why classical notions of “significance” may 
be irrelevant for many A/B tests
● Classical “statistical significance” are based on 

“false positive control” guarantees

○ “False positive”: You conclude there is a true 
difference between A & B, when in reality there 
is no difference

○ 5% significance level = 5% of results will be false 
positive

● This is very valuable when precision is important 
and false positives are costly…
○ but is this really the main thing you care about 

when making business decisions?
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Why classical notions of “significance” may 
be irrelevant for many A/B tests
● For many business decisions, “false positives” 

are not that costly
○ Often by the time some variation can be tested in an 

experiment, most of the design/development work is 
already done
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Why classical notions of “significance” may 
be irrelevant for many A/B tests
● For many business decisions, “false positives” 

are not that costly
○ Often by the time some variation can be tested in an 

experiment, most of the design/development work is 
already done

● If there is no difference between A & B, and the 
cost to implement both is negligible, it really 
doesn’t matter if you make a “wrong” decision

● Precision is less important → Metric optimization 
paradigm can be more useful
○ Smaller sample sizes with less “significance” can 

be okay
78
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● Precision matters 

● False positives are costly
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● Precision matters 

● False positives are costly
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Hypothesis 
Testing

“precision mindset”

Metric
Optimization

“risk mindset”
����

● Precision is “nice to 
have”, but maximizing 
profits is the primary 
goal

● False positives are less 
costly



Key insight #1 for using A/B testing within 
a “metric optimization” framework:
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Key insight #1 for using A/B testing within 
a “metric optimization” framework:

● If there is a big difference between variations 
A & B, it will be obvious!
○ You don’t need millions of observations

● If there is a small difference between 
variations A & B, it is not costly to make the 
wrong decision
○ “If I couldn’t detect an effect after 1 month, it’s too 

small to stress about.”
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Key insight #1 for using A/B testing within 
a “metric optimization” framework:

● If there is a big difference between variations 
A & B, it will be obvious!
○ You don’t need millions of observations

● If there is a small difference between 
variations A & B, it is not costly to make the 
wrong decision
○ “If I couldn’t detect an effect after 1 month, it’s too 

small to stress about.”

● With smaller samples, you won’t get every 
decision correct, but you will get the big ones
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Key insight #2 for using A/B testing within 
a “metric optimization” framework:
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Key insight #2 for using A/B testing within 
a “metric optimization” framework:

● A/B test results follow the 
“Pareto principle”:
○ 80% of gains will be found in 

20% of tests
○ Distribution of effect sizes → 

86
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Key insight #2 for using A/B testing within 
a “metric optimization” framework:

● A/B test results follow the 
“Pareto principle”:
○ 80% of gains will be found in 

20% of tests
○ Distribution of effect sizes → 
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● Getting the most out of A/B testing consists of 
finding the few “big wins”, rather than expecting 
gains from every attempt
○ More shots on goal → More chances of scoring 

big

Fraction of experiments by effect size



Upshot of both insights:

● You will get more value by running MORE 
experiments with SMALLER sample sizes 
compared to running fewer experiments with 
larger sample sizes

● Subject of recent research by Wharton 
professors:
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Simulation 
Exercise



● I’ve helped develop an interactive tool 
designed to:

○ Give you a hands-on feel of what it looks 
and feels like to run an e-commerce A/B 
test

○ Allow you to experience & internalize key 
principles of using A/B testing for decision 
making (covered in this session)

● We are making continuous improvements, so 
input/feedback is welcome
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● I will give a brief demo of how to use the tool
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Logistics

● I’ll be breaking you out into smaller rooms to 
form teams

○ 1st Stage: Practice mode (20 min)
￫ Familiarize yourself with the interface; discuss 

strategies for maximizing score with group

○ 2nd Stage: Competition Mode (15 min)
￫ Groups will compete by playing the same 

version of the game

○ Debrief (15 min)
￫ I’ll asking highest-scoring team(s) to describe 

their strategy
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Practice Mode! (20min)
● Spend 5-10 minutes playing the game on your 

own to familiarize yourself with interface

● Think carefully about the objective of the 
game and how you can maximize your total 
profits at the end of the 12 week period

● Spend 5-10 minutes discussing your insights 
with your group

● Select ONE (1) person to act as your group’s 
avatar

I’ll reconvene whole session before moving to competition
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Competition Mode (15-20min)

● You’ve had a chance to practice; now one 
member from each group will play in a 
“competition mode”

● One member from each group will click the 
competition link (shared in chat)
○ When in break-out room, share screen 

with your group and walk through the 
simulation

● Once finished, we’ll reconvene once more to 
compare scores & debrief
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How do different strategies compare on average?

Dynamic “AI” based strategies only achieve 
marginal gains above a simple “explore first” 
strategies
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Summary of key takeaways:

● If you really want precision, demand very 
small p-values and large sample sizes

● However, precision is costly and, in many 
situations, imprecision may not be that bad

● If you care about “Metric Optimization”, adopt 
a risk mindset and lower your standards for 
precision:

○ Run more experiments, more quickly
○ Most gains come from finding the rare interventions 

with big effects; not precisely measuring typical 
interventions with small effects
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Future of A/B Testing
● A/B testing + Machine Learning = Much more 

sophisticated personalization
○ e.g., Moving from targeting customers 

based on 2 variables (Location, Device) to 
50 variables

○ Recent advances in ML make this 
easy/automatable in principled ways

● Testing platforms will move away from rules 
of thumb for decision making (e.g., p=0.05) 
and toward “Bayesian” paradigms based on 
data
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